2018

CHEMISTRY - HONOURS

Second Paper

Group - A

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

CHT-11a

Unit-I

Answer any three questions.

- 1. (a) Compare the nuclear fission and fusion processes showing relevant nuclear reactions.
 - (b) What is the ground state term symbol of Ti²⁺ ion?

3+2

2. (a) According to Bohr's theory, the energy of nth orbit of a hydrogen atom is given by,

$$E_n = -\frac{21.76 \times 10^{-19}}{n^2} J.$$

Calculate the longest wavelength of light that would be needed to remove an electron from the third Bohr orbit of the He⁺ ion.

(Given,
$$h = 6.626 \times 10^{-34} \text{ J.sec}, c = 3 \times 10^8 \text{ ms}^{-1}$$
)

- (b) Which one of the nuclides in each of the following pairs is radioactive and which is stable? Give reasons for your answer.

 3+2
 - (i) $^{39}_{19}$ K and $^{40}_{19}$ K
 - (ii) $\frac{71}{31}$ Ga and $\frac{76}{31}$ Ga
- 3. (a) Consider the fission process— $\frac{236}{92}U \rightarrow \frac{140}{54}Xe + \frac{93}{38}Sr + 3n$

The binding energy per nucleon for the uranium nucleus is 7.6 MeV, while those for the ¹⁴⁰Xe and ⁹³Sr are 8.4 and 8.7 MeV respectively. Estimate the amount of energy released for each uranium fission.

K(I)-C	hemistry.	-H-2A
(-)	.c.iiii	

(2)

- For the 3p hydrogen-like atomic orbital, sketch and interpret the following plots: 3+2(i) The radial function (ii) The radial probability function **4.** (a) Applying Hund's rules, arrange the following terms in order of increasing energy: ¹S, ¹G, ³F, ¹D, ³P What is the α -activity in disintegrations per minute for 0.001 g sample of 226 Ra ($t_{1/2} = 1620$ years)? (b) 5. (a) When do radionuclides attain their stability by positron emission and K-electron capture? Explain with suitable examples. What is (n + 1) rule and show how the electronic configuration of La (z = 57) violates the (n + 1)rule? Unit - II Answer any two questions. The second ionization of carbon and the first ionization of boron, both correspond to the following: **6.** (a) $1s^22s^22p^1 \rightarrow 1s^22s^2 +$ electron. Compare the two ionization energy values, 24·3 eV and 8·3 eV, respectively. Account for the fact that niobium and tantalum have almost same atomic radii. (b) 3+2 7. (a) Using Slater's rules, determine Z* for a 4s and a 3d electron of copper. Which type of electron is more likely to be lost when copper forms a positive ion? (b) Electron affinity of SF₅ is greater than that of SF₄ or SF₆ — explain. 3+2 8. (a) State the factors on which electronegativity depends. Justify with suitable examples.
 - (b)
 - Predict the largest and smallest in each series suggesting explanation :

(i) Se²⁻, Br⁻, Rb⁺, Sr²⁺

(ii) Y³⁺, Zr⁴⁺, Nb⁵⁺

CHT-11b

3+2

3+2

Unit-I

Answer any three questions.

- Predict the structures of the following ions using VSEPR rules: 9. (a)
 - (i) SbF₄[−]
 - (ii) SeF₃⁺
 - (iii) IOF₄
 - Which member of the pair, NaF or NaBF₄, is likely to be more soluble in water?

- 10. (a) Rationalize the following bond angles in covalent molecules:
 - (i) NH₃ (~107°); NF₃ (~102°)
 - (ii) PH₃ (~94°); PF₃ (~98°)
 - (b) KI is soluble in alcohol while KCl is insoluble. Explain.

3+2

- 11. (a) The formation of CaF in thermodynamically feasible. But CaF₂ is more stable than CaF. Justify qualitatively with the help of Born Lande equation.
 - (b) Calculate dipole moment of methanol from the given data:

 $\mu_{O-H} = 1.7 \text{ D}$

 $\mu_{C-O} = 0.7 D$

 $\mu_{\text{CH}_3} = 0.4 \text{ D}$

∠COH = 110°C

3+2

- 12. (a) Draw the contributing resonance structures of cyanate ion, OCN⁻, and identify the most stable structure with proper reasoning.
 - (b) Justify the statement: ICl₂ is linear, but NH₂ is bent.

3+2

- 13. (a) State the nature of defect found in FeO and NiO compounds. Represent the type of possible stoichiometries. How does this defect affect electrical conductivity?
 - (b) Which of the following pairs of isostructural compounds are likely to undergo thermal decomposition at lower temperature? Explain your answer.
 - (i) MgCO₃, CaCO₃
 - (ii) CsI₃, (CH₃)₄NI₃

3+2

Unit - II

Answer any two questions.

- 14. (a) Consider HSAB principle to answer the following:
 - (i) Will Cu2+ react more favourably with OH- or NH3?
 - (ii) Will Ag+ react more favourably with NH3 or PH3?
 - (b) B₂O₃ is acidic, Al₂O₃ is amphoteric and Sc₂O₃ is basic. Justify.

3+2

- 15. (a) Calculate the pK₁ of H₃AsO₃ and H₃PO₃ using Pauling's empirical rule.
 - (b) SbF₅ acts as an acid and KF acts as a base when dissolved in BrF₃ solvent. Explain the observation giving proper chemical equations. 3+2

(4)

16. (a) 4g of NaOH was dissolved in 1 litre of a solution containing 1 mole of acetic acid and 1 mole of sodium acetate. Find the pH of the resulting solution.

(K_a of acetic acid = 1.8×10^{-5}).

(b) Consider the following pair:

 $(H_3Si)_2O, (H_3C)_2O$

Explain why silyl ether is the weaker Lewis base.

3+2