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Abstract. We propose and analyze a predator-prey model, in which both population is infected by
disease. The total population has been classified into susceptible prey, infected prey, susceptible preda-
tor, and infected predator. The disease cannot be transmitted between prey and predator by predation.
The predation ability of susceptible predator is stronger than infected ones. Local stability analysis
of biologically feasible equilibria is worked out with the help of disease basic reproduction numbers.
The system is persistent under some feasible parametric conditions. The numerical analysis is carried
out to discuss some interesting results that our model exhibits.

1 Introduction

In ecology populations are infected by various diseases which plays a significant role in regulating
the population sizes. Researchers give more attentions from several years past to study the dynamical
behaviour of such populations. As a result several mathematical models have been developed. Also
essential mathematical tools are derived in analyzing the interaction of different populations like
predator-prey interaction. The study of predator-prey dynamics with an infected predator has a great
importance in controlling the predator population. But this area has been neglected for a long time
in theoretical ecology. Numerous prey-predator models with infectious diseases had investigated [1,
2, 3, 4, 5, 6, 7, 8, 9, 10] in which most of the authors considered the predator-prey model with only
prey affected by some diseases. In particular, the authors in the reference [8] proposed a predator-prey
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model with logistic growth in the prey population including an SIS parasitic infection in the prey and
observed that the infected prey being more vulnerable to predation. They also found that the infection
in the prey population could promote coexistence. In the references [11, 12, 13] the authors used
Holling type-II predation rate function, the disease is not genetic, and no immunity was considered.

In this paper, we consider a predator-prey model in which both the population affected by disease.
The predation rate is different for the susceptible predator and infected predator. The disease is not
transmitted vertically in the predator. In nature this type actually exists. For example [14], the white
spot viral disease (by white spot baculovirus)gets transmitted by contact from the Nauplius stage of
shrimp to other shrimp [15] which consumes the Phaeocystis phytoplankton infected by phaeccystis
pouchetii viral disease [16] considered a marine planktonic system where both phytoplankton (such
as Cryptophyte) and zooplankton (such as Rotifers) are infected by some viral disease. To explain the
scenario, we formulate a mathematical model that the viral disease could be infected both the predator
and prey populations, but it cannot be transmitted between them.

In the present paper, we derive the condition for existence of positive equilibria. We also perform
local stability analysis of the positive interior equilibrium.

2 The mathematical model

To construct the mathematical model, we make the following assumptions:
• The prey whose total population density is denoted by S and the predator whose total population
density is denoted by P.
• In presence of disease total prey population is divided into susceptible prey X and infected prey Y .
The total predator population is also divided into susceptible predator Z and infected predator W . So,
at time t total prey population is S = X +Y and total predator population is P = Z +W .
• Disease does not spread from prey to predator by feeding or any other ways. We assume that
the disease only transmits from susceptible prey X to infected prey Y and susceptible predator Z to
infected predator W .
•We assume that the susceptible prey is capable of reproducing according to the logistic law

dX
dt

= rX
(

1− X +Y
K

)
.

with carrying capacity K(> 0) and intrinsic growth rate r(> 0).
• The susceptible prey X becomes infected followed by the mass action law with the rate of infection
α and also the susceptible predator Z is infected according to the mass action law with the rate of
infection β. We also assume that infected prey and predator do not recover from the disease.
• Both predators consume only infected prey following Holling type-I functional response at constant
rate c.

Considering the above basic assumptions we have the following mathematical model.
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dX
dt

= rX
(

1− X +Y
K

)
−αXY ≡ F1(X ,Y,Z,W ),

dY
dt

= αXY − cY (Z + eW )−dY ≡ F2(X ,Y,Z,W ),

dZ
dt

= r1cY (Z + eW )−βZW −d1Z ≡ F3(X ,Y,Z,W ), (2.1)

dW
dt

= βZW −d2W ≡ F4(X ,Y,Z,W ),

where r1 is the conversion rate factor for the susceptible predator due to consumption of infected prey,
e (0< e< 1) stands for the impact of disease on the predation rate, and the parameters d, d1, d2 (d1 <
d2) are the death rates of infected prey, susceptible predator and infected predator respectively.

The system (2.1) has to be analyzed with the following initial conditions,

X(0)> 0, Y (0)> 0, Z(0), W (0)> 0. (2.2)

3 Qualitative analysis of the system

3.1 Boundedness of the System

Theorem 3.1. All the solutions of the system (2.1) are bounded.

Proof: Consider the function U(t) = X(t)+Y (t)+Z(t)+W (t).
Now, using the equations (2.1), we have

dU
dt =

dX
dt

+
dY
dt

+
dZ
dt

+
dW
dt

= rX(1− X +Y
K

)− c(1− r1)Y (Z + eW )−dY −d1Z−d2W

≤ rX− r
K

X2− r
K

XY −dY −d1Z−d2W, if r1 ≤ 1.

Therefore, dU
dt +µU ≤ (r+µ)X− r

K X2− r
K XY − (d−µ)Y − (d1−µ)Z− (d2−µ)W .

Let µ = min{d,d1,d2}, then dU
dt +µU ≤ X(r+µ− r

KY )≤ K(r+µ)2

4r .
If we take r1 ≤ 1 and µ = min{d,d1,d2}, then for each µ≥ 0 the above inequality becomes

dU
dt

+µU ≤ m, where m =
K(r+µ)2

4r
.

Now by the theory of differential inequality ( Birkhoff and Rota [17]), we have

0≤U(t)≤ m
µ
(1− e−µt)+U(0)e−µt .

As t→ ∞, then 0≤U(t)≤ m
µ . Hence U(t) is a bounded quantity.

Thus all the solutions of the system (2.1) are confined in the region

Ω =

{
(X ,Y,Z,W ) : 0≤ X(t)+Y (t)+Z(t)+W (t)≤ m

µ
+ ε, for all ε > 0

}
.
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3.2 Equilibria Analysis

• The equilibria E0( 0, 0, 0, 0 ) and E1( K, 0, 0, 0 ) exist for all parametric values.
• The predators free equilibrium point E2( X , Y , 0, 0 ) exists if R0 < 1, where R0 =

d
Kα

, X = d
α

and
Y = r(Kα−d)

α(r+Kα) .

• The infected predator free equilibrium point E3( X̃ , Ỹ , Z̃, 0 ) exists if R1 < 1, where R1 =
d1(r+Kα)

Krr1c + d
Kα

X̃ = K
{

1− d1(r+Kα)
Krr1c

}
, Ỹ = d1

r1c , Z̃ = Kα

c

{
1− d1(r+Kα)

Krr1c −
d

Kα

}
.

• The positive interior equilibrium point E∗( X∗, Y ∗, Z∗, W ∗ ) exists if

R2 =
d2α

cerr1

(Kα+ r)
(Kα+d)

< 1,R3 =
βKdcerr1 + ced1d2(r+Kα)

d2(r+Kα)(βd + cd2)
< 1

, where Y ∗ =
r(K−X)

(r+Kα)
, Z∗ =

d2

β
and W ∗ =

1
ce

{
αX∗− (d +

cd2

β
)

}
and X∗ is the positive root of

the equation AX2−BX−C = 0, and the coefficients are given by

A =
αβerr1

r+Kα
,

B = βerr1
(Kα+d)
r+Kα

−αβ
d2

c
,

C =
d2

c
(βd + cd2)− ed1d2−

βKderr1

r+Kα
.

3.3 Stability Analysis

The stability of the system (2.1) at each equilibria is obtained by using Routh-Hurwitz stability crite-
rion.

For this we have to compute the variational matrix V (X ,Y,Z,W ) of the system (2.1) and check the
stability at each of the equilibrium.
Result 1. The equilibrium point E0 : (0,0,0,0) is unstable saddle as one eigenvalue of the variational
matrix is positive.
Result 2. The equilibrium point E1 : ( K, 0, 0, 0 ) is stable if R01 < 1, where R01 =

1
R0

= Kα

d .

Result 3. The predators free equilibrium point E2 : ( X , Y , 0, 0 ) is stable if R02 = r1cr (Kα−d)
d1(r+Kα) < 1.

Result 4. The infected predator free equilibrium point E3 : ( X̃ , Ỹ , Z̃, 0 ) is locally asymptotically
stable if R03 =

Kαβ

cd2
(1−R1)< 1.(For proof see Appendix.)

Stability analysis of the positive interior equilibrium and Hopf bifurcation

Theorem 3.2. The positive interior equilibrium point E∗( X∗, Y ∗, Z∗, W ∗ ) is locally asymptotically
stable if σ1 > 0,σ4 > 0,σ1σ2−σ3 > 0,σ3(σ1σ2−σ3)−σ4σ2

1 > 0, where σ′is are given in the proof
of the theorem.

Proof: The variational matrix of the system (2.1) around the the positive equilibrium point
E∗( X∗, Y ∗, Z∗, W ∗) is
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V ∗ =


−m11 −m12 m13 m14
m21 m22 −m23 −m24
m31 m32 −m33 −m34
m41 m42 m43 m44


where m11 =

r
K X∗> 0, m12 = ( r

K +α)X∗> 0,m13 = m14 = 0; m21 =αY ∗> 0, m22 = 0, m23 = cY ∗>
0, m24 = ceY ∗ > 0; m31 = 0, m32 = r1c(Z∗+ eW ∗) > 0, m33 =

βer1c
d2

Y ∗W ∗ > 0, m34 = d2− r1ceY ∗;
m41 = m42 = 0,m43 = βW ∗ > 0,m44 = 0.

The characteristic equation of the variational matrix V ∗ at E∗ is given by
ρ4 +σ1ρ3 +σ2ρ2 +σ3ρ+σ4 = 0,

where
σ1 = (m11 +m33) =

r
K X∗+ βecr1

d2
Y ∗W ∗ > 0

σ2 = m11m33 +m34m43 +m12m21 +m23m32

=
βcerr1

d2K
X∗Y ∗W ∗+β(d2− r1ce Y ∗)W ∗+α(

r
K
+α) X∗ Y ∗+ r1c2(Z∗+ eW ∗)Y ∗

σ3 = m21m12m33 +m34m43m11 +m11m23m32 +m24m32m43

=
αβcer1

d2K
(

r
K
+α)X∗ Y ∗ Y ∗ W ∗+

rβ

K
(d2− r1ce Y ∗) X∗W ∗

+
rr1c2

K
(Z∗+ eW ∗)+βec2r1(Z∗+ eW ∗)Y ∗ W ∗

σ4 = m12m21m34m43 +m11m24m32m43

=

{
αβ(

r
K
+α)(d2− r1ceY ∗)+

βrr1ec2

K
(Z∗+ eW ∗)

}
X∗ Y ∗ W ∗

σ1σ2−σ3 = m11(m12m21 +m11m33)+

m33(m11m33 +m23m32 +m34m43)−m24m32m43

σ3(σ1σ2−σ3)−σ4σ
2
1 = m11m34m43(m2

11m33 +m11m2
33 +m33m23m32 +m33m34m43)+

m11m32m23(m11m12m21 +m2
11m33 +m11m2

33 +m33m23m32 +

m33m34m43)+m24m32m43(m11m12m21 +m2
11m33 +m33m32m23 +

+m33m34m43)+m12m21m33(m11m12m21 +m11m2
33 +m33m32m23)

−m24m32m43(m11m34m43 +m11m32m23 +m24m32m43 +

+m12m21m33 +m3
11 +2m2

11m33)−2m11m33m12m21m34m43

Using the Routh-Hurwitz criteria, we observe that the system (2.1) is locally asymptotically stable
around the interior equilibrium point E∗ if σ1 > 0, σ4 > 0, σ1σ2−σ3 > 0, σ3(σ1σ2−σ3)−σ4σ2

1 > 0.

Theorem 3.3. The Hopf-bifurcation of the equivalent equilibrium E∗ occurs at λ1 = λ∗1 ∈ (0,∞) if
and only if
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(i)Ψ(λ∗1) = 0
(ii)σ3

1σ′2σ3(σ1−3σ3)> 2(σ2σ2
1−2σ2

3)(σ
′
3σ2

1−σ′1σ2
3).

and all other eigenvalues are of negative real parts, where ρ(λ1) is purely imaginary at λ1 = λ∗1.

Proof: By the condition Ψ(λ∗1) = 0, the characteristic equation can be written as

(ρ2 +
σ3

σ1
)(ρ2 +σ1ρ+

σ1σ4

σ3
) = 0.

If this equation has four roots, say ρi(i = 1,2,3,4) with the pair of purely imaginary roots at λ1 = λ∗1
as ρ1 = ρ̄1, then we have

ρ3 +ρ4 =−σ1 (3.1)

ω
2 +ρ3ρ4 = σ2 (3.2)

ω
2
0(ρ3 +ρ4) =−σ3 (3.3)

ω
2
0ρ3ρ4 = σ4 (3.4)

where ω0 = Imρ1(λ
∗
1) =

σ3
σ1

. Now, if ρ3 and ρ4 are complex conjugate, then from (3.3) it follows that
2Reρ3 =−σ1; if ρ3 and ρ4 are real roots, then by (3.3) and (3.4) ρ3 < 0 and ρ4 < 0. To complete the
discussion, it remains to verify the transversality conditions.

As Ψ(λ∗1) is a continuous function of all its roots, so there exists an open interval λ1 ∈ (λ∗1−ε,λ∗1+
ε) where ρ1 and ρ2 are complex conjugate for λ1. Suppose, their general form in this neighbourhood
are

ρ1(λ1) = χ(λ1)+ iν(λ1)

ρ2(λ1) = χ(λ1)− iν(λ1)

Now, we shall verify the transversality condition[
dRe(ρ j(λ1))

dλ1

]
λ1=λ∗1

> 0, j = 1,2.

ρ1(λ1) = χ(λ1)± iν(λ1), into the characteristic equation D(ρ) = 0 and calculating the derivative, we
have

Q(λ1)χ
′(λ1)−L(λ1)ν

′(λ1)+M(λ1) = 0 (3.5)

Q(λ1)χ
′(λ1)+L(λ1)ν

′(λ1)+N(λ1) = 0

where

Q(λ1) = 4χ
3−12χν

2 +3σ1(χ
2−ν

2)+2σ2χ+σ3

L(λ1) = 12χ
2
ν+6σ1χν−4ν

3 +2σ2ν

M(λ1) = σ1χ
3−3σ

′
1χν

2 +σ
′
2(χ

2−ν
2)+σ

′
3χ

N(λ1) = 3σ
′
1χ

2
ν−σ

′
1ν

3 +2σ
′
2χν+σ

′
3ν
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Solving for χ′(λ∗1), we have

χ
′(λ1)λ1=λ∗1

=

[
d

dλ1

{
Re(ρ j(λ1))

}]
λ1=λ∗1

=−L(λ∗1)N(λ∗1)+Q(λ∗1)M(λ∗1)

Q2(λ∗1)+L2(λ∗1)

=
σ3

1σ′2σ3(σ1−3σ3)−2(σ2σ2
1−2σ2

3)(σ
′
3σ2

1−σ′1σ2
3)

σ4
1(σ1−3σ3)2 +4(σ2σ2

1−2σ2
3)

2
> 0,

if σ
3
1σ
′
2σ3(σ1−3σ3)> 2(σ2σ

2
1−2σ

2
3)(σ

′
3σ

2
1−σ

′
1σ

2
3).

Hence proves the theorem.

4 Biological interpretation

(a) R01 = Kα

d , this is the parameter which determines the local stability of the equilibrium point
E1(K,0,0,0). Here, Kα is the birth rate of infected prey at E1 and d is the removal of infected prey
due to disease induced mortality. So, R01 is the disease basic reproduction number at E1. Thus when
R01 < 1, predators will become extinct, and so will infected prey. The condition result in E1 being
stable. Therefore, stability of E1 imply that E2 does not exist.
(b) R02 = r1cr (Kα−d)

d1α(r+Kα) , this is the parameter which determines the local stability of the steady state

E2(X ,Y ,0,0). Here, r1cr (Kα−d)
(r+Kα) is the birth rate of susceptible predator at the equilibrium point E2

and 1
d1

is the mean life span of susceptible predator at E2. So their product R02 is the mean number
new born predators, which is considered as ecological basic reproduction number at E2.Thus R02 < 1
implies the predators will become extinct. The condition result in E2 being stable.
(c) R03 = Kαβ

cd2
(1−R1), determines the local stability of the equilibrium point E3(X̃ , Ỹ , Z̃, 0). R03

is the ecological basic reproduction number at E3. Thus R03 < 1 implies the infected predator will
become extinct. The condition result in E3 being stable.

5 Numerical simulations

Parameter Definition Default Value
r Growth rate of susceptible prey 1
K Carrying capacity 300
α The infectious rate in prey populations 0.032
c Consume rate of susceptible predator 0.013
e The impact of disease on predation rate, where 0 < e < 1 0.55
r1 Conversion rate of predator due to consumption of prey 0.9
β The infectious rate in predator populations 0.016
d Mortality rate of infected prey 0.01
d1 Mortality rate of susceptible predator 0.001
d2 Mortality rate of infected predator 0.21

Table 1 A set of parametric values.
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Fig. 1 The equilibrium point E∗ is locally asymptotically stable for the set of parameter in the Table 1.
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Fig. 2 The figures depicts oscillatory behaviour of susceptible prey, infected prey and susceptible predator populations for
α = .085 and β = .056, with same set of parameter as given in the Table1.

In this section, our study focused on the occurrence and termination of the disease. We begin with
a set of parameter (see Table1) for which the existence conditions of the coexistence equilibrium point
E∗ is satisfied and the coexistence equilibrium point E∗= (25.9197,25.8566,13.1250,90.7419) is lo-
cally asymptotically stable in the form of a stable focus with eigenvalues
−0.0580± i 0.9839,−01.0574,−0.0634 (see Figure1). Keeping the other parameters fixed and in-
creasing the value of the parameters α from 0.032 to 0.085 and β from 0.016 to 0.056,
we observe that the solution of (2.1) changes from stable behavior to oscillatory behavior ( see Figure
2). Next, to observe the effects of some parameters on system (2.1), we first consider α = 0.004 and
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Fig. 3 The figure depicts that for α = .004 and β = .0014, E∗ approaches infected predator free equilibrium E3 with other
parametric values kept fixed in the Table 1.
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Fig. 4 The figure depicts that for α = 2.6 and β = .01, E∗ approaches susceptible and infected predator free equilibrium
E2 with other parametric values kept fixed in the Table 1.

β = 0.0014 and observe that the infected predator population goes to extinction (see Figure 3). Tak-
ing α = 2.6 and β = 0.01, we observe that the system (2.1) goes to predator free equilibrium point
(see Figure 4). Also, for α = 0.00001 and β = 0.015, system (2.1) goes to infected prey and predator
free equilibrium point (see Figure 5). Finally, for a clear understanding of the dynamical changes of
system (2.1) due to changing the value of the parameter α, from 0.04 to 0.09; a bifurcation diagram
is plotted as shown in (Figure 6).
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Fig. 5 The figure depicts that for α = .00001 and β = .015, E∗ approaches infected prey, susceptible predator and infected
predator free equilibrium E1 with other parametric values kept fixed in the Table 1.
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Fig. 6 The bifurcation diagram of all the populations with α as the bifurcation parameter.

6 Conclusion

In this paper, we discuss a predator-prey model with infectious disease which can transmit both in
predator and prey, but cannot transmit between predator and prey. We find that lots of diseases are not
transmitted vertically [15], so we assume that the disease in the predator is not genetic. This is the
major difference with [13]. The non-linear differential equations are set up. Through the discussion
on the stability of equilibrium points, we obtain four stable equilibrium points corresponding to four
existence statuses with different species. Furthermore, we discuss the basic reproduction numbers
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which are obtained analytically. And the threshold parameters which are combined to meaningful
biological conditions are given too.

7 Appendix

Since one of the eigenvalues of the variational matrix computed around E0 is r > 0, so the equilibrium
point E0 is always unstable node for all parametric values.
The characteristic roots of the variational matrix V1 computed around E1 are−r ,−(d−Kα) ,−d1 ,−d2.
Hence E1 is stable if R01 < 1, where R01 =

1
R0

= Kα

d .

The characteristic roots of the variational matrix V2 computed around E2 are −d2,
crr1(Kα−d1)

α(Kα+r) −d1
and the negative roots of the equation

µ2 + rd
Kα

µ + dr
Kα

(Kα−d) = 0.
Hence E2 is stable if crr1(Kα−d)

(Kα+r) −d1 < 0 which imply the condition R02 < 1

where R02 =
crr1(Kα−d)
d1(Kα+r) .

The variational matrix of the system (2.1) around the equilibrium point E3( X̃ , Ỹ , Z̃, 0 ) is

V3 =


m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44


where

m11 =−
r
K

X̃ < 0, m12 =−(
r
K
+α)X̃ < 0,m13 = m14 = 0;

m21 = αỸ > 0, m22 = 0, m23 =−cỸ < 0, m24 =−ceỸ < 0;

m31 = 0, m32 = r1cZ̃ > 0, m33 = 0, m34 = r1ceỸ −βZ̃;

m41 = m42 = m43 = 0,m44 = βZ̃−d2 > 0;

It is found that the characteristic roots of the variational matrix V2 at E2 are
Kαβ

c

{
1− d1(r+Kα)

Krr1c −
d

Kα

}
−d2 and the roots of the equation

y3 +Q1y2 +Q2y+Q3 = 0

where Q1 =−m11 > 0 (since m11 < 0) Q2 =−m32m23 +m12m21 > 0 (since m23 < 0,m12 < 0); Q3 =
m11m32m23 > 0 (since m11 < 0,m23 < 0) and Q1Q2−Q3 = m11m12m21 > 0
Hence the Routh -Hurwitz criteria are satiesfied. So, E3 is locally asymptotically stable if
Kαβ

c

{
1− d1(r+Kα)

Krr1c −
d

Kα

}
−d2 < 0

which imply the condition R03 < 1.
where R03 =

Kαβ

cd2
(1−R1).
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Abstract. In this paper, we have considered an SEIT epidemic model with new modulated saturated
incidence and discrete time delay. From our motivation first we prepare the mathematical model and
the effect of time delay is investigated. Our main consideration that the disease is transmitted only by
contact with the infected individuals of the same species. The model convey two equilibria namely,
a disease free equilibrium and an endemic equilibrium. With the help of basic reproductive number
we discuss the transmission dynamics of the disease. Analyzing the model we have found out the
mathematical results like invariant region boundedness and local stability of both the delayed and
non delayed system. From our details study we can say that bifurcation occurs due to discrete time
delay τ. Also we are trying to examine what will happen if we increase the discrete time delay. The
stability of the endemic equilibrium point breaks of the delay system and Hopf bifurcation occurs.
When the bifurcation parameter passes through the critical value, E∗ falls its stability and a family of
periodic solutions bifurcate from E∗. With the support of competent value of the parameter we have
calculated the value of basic reproductive number. The proposed model has been solved numerically
and it verify the analytical results.

1 Introduction

At that conjuncture time all over the World population were faced various kind of life killing diseases,
such as Ebola, HIV/AIDS, Breast cancer, influenza, rubella, dengue and chicken pox. Basically such
type of disease is transmit through horizontally and vertically. Horizontal transmission means the dis-
ease spread by contact and vertical transmission means by birth that is pregnant mother to new born
child. All of you are know that some of the infectious disease are extent by direct touch with the

2010 Mathematics Subject Classification: 92B05, 37N25.
Keywords:SEIT Epidemic model, New modulated saturated incidence, Basic reproduction number, Stability, Time delay
.
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same species and some of them are transmitted by viral agent, such as measles, rubella and dengue.
In this paper we like take up only those diseases which spread only by horizontal transmission. Math-
ematical point of view the model which is related to epidemiology gives an idea to understanding the
mechanisms of spread and control of the contagious disease. In 1927 Kermack-Mckendrick introduce
a SIR epidemic model and he used the mass action term in the form βSI

N , where β, S and I denotes
the transmission rate, susceptible population, infected population and N is the total population. So
many epidemiological models have been developed with or without delay [1],[2],[3],[4],[5] and [6].
So many works have been done already on the disease transmission [7]. Innumerable papers have
been published through the use of non-linear incidence rate [8],[9],[10],[11],[12],[13], [14],[15] and
[16].

The above mention incidence rate plays a vital role to formulate a mathematical model. If the
number of infected individuals is increase then the infection force is decrease. According to biolog-
ical aspect there are so many reasons to initiate the time delays in mathematical model of disease
transmission. Various paper have been published with discrete time delay and non-linear incidence
rate [17] and [18]. Following different biological mechanisms came out from the various time delays
epidemiological models; a). Delay due to temporary immunity: Some kind of infections take steps or
time lag to recovered individuals with a short or long immunity against reinfection. Some type of dis-
eases provide life long immunity [19] and [20]. b). Delay caused by the latency in a vector: We know
that various infectious diseases are spread from one host to another by vector that is through agent.
Malaria, dengue fever is such types of disease which spread by vector and the disease take some time
to spread. According to various organisations report all the countries of the World the transmission
rate of such types of disease is very high. In this paper we proposed a delayed SEIT epidemic model
with new modulated saturated incidence rate i.e. βSI

1+α1I+α2I2 and the disease is transmitted horizon-
tally that is direct or indirect contact. The direct contact means touching, bitting, licking and indirect
contact means vector agent. In this model we would extend the non-linear incidence rate of the model
[21], [22] and [23]. The main focuses of my study on a SEIT epidemic model of disease transmission
with new modulated saturated incidence rate and the effect of time delay. It is very essentials to discus
all the parameters of the proposed mathematical model. The such types of disease transmission totally
depends on the basic reproduction number R0. The disease will persists or fade out it totally depends
on the basic reproductive number R0. If R0 lies between zero and one then the disease dies out and it
will be persists when R0 is greater than one. Analyze the stability of our proposed model and it solved
numerically which justify the analytical result.

2 The mathematical model

Here we consider a delay SEIT epidemic model with new modulated saturated incidence. For our
study suppose that the total population is constant and it is denoted by N(t). We divide the total
population into four subclasses such that susceptible class S(t), exposed class E(t), infected class I(t)
and treatment class or recovery class T(t). Consequent to our assumption the disease is spread only
by contact.
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dS
dt

= Λ−β1 f (S(t− τ)I(t− τ))−β2 f (S(t− τ)E(t− τ))−µS+ γT,

dE
dt

= β1 f (S(t− τ)I(t− τ))+β2S(t− τ)E(t− τ)− εE−µE,

dI
dt

= εE−θI−µI, (2.1)

dT
dt

= θI− γT −µT.

where, f {S(t− τ), I(t− τ)}= S(t−τ)I(t−τ)
1+α1I(t−τ)+α2I2(t−τ)

f {S(t− τ),E(t− τ)}= S(t−τ)E(t−τ)
1+α1I(t−τ)+α2I2(t−τ)

β1 is the per capita contact rate between susceptible class and infected class, β2 is the per capita
contact rate between infected class and exposed class, α1 and α2 are two positive constants, µ is the
mortality rate of all adults class, τ > 0 is the latent time delay and it make a susceptible infected
after interaction with exposed class and infected class. ε is the rate by which the exposed classes
are recruited to infected class. Λ the rate at which the susceptible classes are recruited. θ the rate at
which the infected class are recruited to treatment class. γ is the at which the individuals leave the
compartment T and enter the compartment S. We consider a new modulated saturated incidence rate
of the form βSI

1+α1I+α2I2 which indicates that infection force are decreases when the number of infective
are increasing. Let Ψ(ϑ) = [S(ϑ),E(ϑ), I(ϑ),T (ϑ)] , ϑ ∈ [−τ,0], with the norm of Ψ defined as

‖Ψ‖= sup−τ≤ϑ≤0 |Ψ(ϑ)| where the symbol ||.|| is denote the norm in ∈ R+
4.

Therefore the initial condition for system of equation (2.1) is Ψ(ϑ) = [S(ϑ),E(ϑ), I(ϑ),T (ϑ)], where
S(ϑ)≥ 0, E(ϑ)≥ 0, I(ϑ)≥ 0 and T (ϑ)≥ 0, for all ϑ ∈ [−τ,0]. Equation (2.1) subject to the above
assumption has a unique solution [7].

3 Invariant region

Lemma 1. All the non-negative solutions of the system (2.1) starting in R4
+ are bounded and eventu-

ally enter the attracting set Ψ =
{
(S,E, I,T ) ∈ R4

+ : 0≤ S+E + I +T ≤ Λ

µ

}
.

Proof: Let all parameters of the system (2.1) are non negative. Here N = S+E + I + T dN
dt =

Λ−µ(S+E + I +T ) or, dN
dt = Λ−µN. Since N(t)≥ 0 on [−τ,0] by consideration, N(t)≥ 0 for all

t ≥ 0. Hence limt→∞ sup (S+E + I +T )≤ Λ

µ . Hence all the positive solutions of the model (2.1)
starting in R4

+ are bounded and eventually enter the invariant and compact set

Ψ =
{
(S,E, I,T ) ∈ R4

+ 0≤ S+E + I +T ≤ Λ

µ

}
.

Lemma 2. All the solutions of the system (2.1) is positive ∀ t > 0 with the help of initials conditions
S(0)≥ 0, E(0)≥ 0, I(0)≥ 0, T (0)≥ 0, and t ∈ [−τ,0].

Proof: From the first equation of equation (2.1), we have
dS
dt = Λ− β1SIe−λτ

1+α1I+α2I2 − β2SEe−λτ

1+α1I+α2I2 −µS+ γT dS
dt = Λ+ γT −

[
β1Ie−λτ

1+α1I+α2I2 +
β2Ee−λτ

1+α1I+α2I2 +µ
]

S

dS
dt ≥−

[
β1Ie−λτ

1+α1I+α2I2 +
β2Ee−λτ

1+α1I+α2I2 +µ
]

S

S(t)> S(0)e
−
∫{ β1I(ξ)e−λτ

1+α1I(ξ)+α2I2(ξ)
+

β2E(ξ)e−λτ

1+α1I(ξ)+α2I2(ξ)
+µ
}

dξ

≥ 0. Similarly from the second, third and fourth
equation of the system (2.1) we can prove that
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E(t)≥ E(0)
e(µ+ε)t ≥ 0 , I(t)≥ I(0)

e(µ+θ)t ≥ 0 and T (t)≥ T (0)
e(µ+γ)t ≥ 0. Therefore all solutions of the system (2.1)

are positive ∀ t ≥ 0 in the region Ψ.

4 Qualitative Analysis of the Model (2.1)

The system (2.1) consists two positive equilibria, namely
(i) the disease free equilibrium E0 = (Λ

µ ,0,0,0),
(ii) the endemic equilibrium E∗ = (S∗,E∗, I∗,T ∗), where
S∗ = (µ+θ)(µ+ε)(1+α1I∗+α2I∗2)

e−λτ[β1ε+β2(µ+θ)]
= Λ(1+α1I∗+α2I∗2)

µR0
,E∗ = (µ+θ)I∗

ε
,T ∗ = θI∗

(µ+γ) and I∗ is given as a root of
the quadratic equation

A1I∗2 +B1I∗+C1 = 0 (4.1)

, where A1 = α2µε(µ+θ)(µ+ ε)(µ+ γ)> 0,
B1 = α1µε(µ+θ)(µ+ ε)(µ+ γ)+β1ε(µ+θ)(µ+ ε)(µ+ γ)+β2(µ+θ)− γεθe−λτ[β1ε+β2(µ+θ)],
C1 = µε(µ+θ)(µ+ ε)(µ+ γ)(1−R0)> 0,
where R0 is a basic reproduction number given as follows

R0 =
Λe−λτ[β1ε+β2(µ+θ)]

µ(µ+θ)(µ+ ε)
.

When R0 > 1, then C1 < 0. The above result ensure that while R0 > 1 the above quadratic equation
has a positive root. Therefore I∗ = −B1±

√
(B2

1−4A1C1)
2A1

.

4.1 Disease free-equilibrium E0

Theorem 1. The disease free equilibrium E0 is locally asymptotically stable if R01 < 1, (µ+ε+θ)>
Λβ2

µ and τ≥ 0.

Proof. The variational matrix of the model system (2.1) around the disease free equilibrium point
E0 is given by

V0 =


−µ −Λβ2e−λτ

µ −Λβ1e−λτ

µ γ

0 −Λβ2e−λτ

µ − (µ+ ε) Λβ1e−λτ

µ 0
0 ε −(µ+θ) 0
0 0 θ −(µ+ γ)


The characteristic equation is
(µ+λ)(µ+ γ+λ)

[
λ2 +

[
(µ+ ε)+(µ+θ)− Λβ2e−λτ

µ

]
λ+(µ+ ε)(µ+θ)− Λe−λτ[β1ε+β2(µ+θ)]

µ

]
= 0

Two eigenvalues are −µ, −(µ+ γ) and the other two eigenvalues of the quadratic equation

λ
2 +

[
(µ+ ε)+(µ+θ)− Λβ2e−λτ

µ

]
λ+(µ+ ε)(µ+θ)− Λe−λτ[β1ε+β2(µ+θ)]

µ
= 0 (4.2)

For τ = 0, equation (4.2) becomes

λ
2 +

[
(µ+ ε)+(µ+θ)− Λβ2

µ

]
λ+(µ+ ε)(µ+θ)− Λ[β1ε+β2(µ+θ)]

µ
= 0, (4.3)
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i.e. P1λ
2 +Q1λ+R1 = 0, (4.4)

where P1 = 1, Q1 = [(µ+ ε)+ (µ+θ)− Λβ2
µ ]> 0, if (µ+ ε+θ)> Λβ2

µ and R1 = (µ+ ε)(µ+θ)(1−
R01)> 0, if R01 < 1, where R01 =

Λ[β1ε+β2(µ+θ)]
µ(µ+θ)(µ+ε)

Hence all the roots of the quadratic equation (4.4) are negative if R01 < 1 and (µ+ ε+θ)> Λβ2
µ .

Therefore when R01 < 1, (µ+ ε+θ)> Λβ2
µ , and τ = 0 then the characteristic equation (4.2) has four

negative eigenvalues and the disease free equilibrium E0 is locally asymptotically stable.

Now suppose τ 6= 0, i. e. τ > 0 by Rouche’s theorem [24], Theorem 9.17.4, it follows that if in-
stability occurs for a particular value of the delay τ, a characteristic root of (4.2) must intersect the
imaginary axis. Let λ = ϕi, ϕ > 0 is a roots of the above quadratic equation (4.2). Putting the value
λ = ϕi into the equation (4.2) we get

−ϕ
2 + i

[
ϕ(µ+θ)(µ+ ε)− ϕβ2Λcosϕτ

µ
+

Λsinϕτ[β1ε+β2(µ+θ)]

µ

]
− ϕΛβ2 sinϕτ

µ
− Λcosϕτ[β1ε+β2(µ+θ)]

µ
+(µ+θ)(µ+ ε) = 0 (4.5)

Separating the real and imaginary part, gives

−ϕ
2 +(µ+θ)(µ+ ε) =

ϕΛβ2 sinϕτ

µ
+

Λcosϕτ[β1ε+β2(µ+θ)]

µ
(4.6)

ϕ(µ+θ)(µ+ ε) =
ϕβ2Λcosϕτ

µ
− Λsinϕτ[β1ε+β2(µ+θ)]

µ
(4.7)

Squaring and adding equation (4.6) and (4.7) we have

ϕ
4 +ϕ

2
[
(µ+θ)2 +(µ+ ε)2− β2Λ2

µ2

]
+(µ+θ)2(µ+ ε)2(1−R2

01) = 0 (4.8)

It follows from Routh-Hurwitz Criteria that the roots of the equation (4.8) all have negative real
parts if R01 < 1 and when τ > 0. Hence we say that the disease free equilibrium point E0 of the
given system is locally asymptotically stable if and only if τ ≥ 0, R01 < 1 and satisfies the condition
(µ+ ε+θ)> Λβ2

µ .

4.2 Local Stability of Endemic Equilibrium :

Theorem 2. For R0 > 1, the endemic equilibrium point E∗ is locally asymptotically stable, if and only
if τ≥ 0.

Proof. The Jacobian matrix V ∗ about the endemic equilibrium point E∗ is given by,

V ∗ =


−β1I∗ae−λτ−β2aE∗e−λτ−µ −β2aS∗e−λτ −β1S∗a2e−λτ γ

β1aI∗e−λτ +β2aE∗e−λτ β2aS∗e−λτ β1S∗a2e−λτ 0
0 ε −(µ+θ) 0
0 0 θ −(µ+ γ)


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The characteristic equation is

λ
4 +a1λ

3 +a2λ
2 +a3λ+a4 + e−λτ(b1λ

3 +b2λ
2 +b3λ+b4),where (4.9)

a1 = µ+(µ+ γ)+(µ+ ε)+(µ+θ),
a2 = µ(µ+ γ)+µ(µ+ ε)+µ(µ+θ)+(µ+ ε)(µ+ γ)+(µ+θ)(µ+ γ)+(µ+ ε)(µ+θ),
a3 = µ(µ+ γ)(µ+ ε)+µ(µ+ γ)(µ+θ)+µ(µ+θ)(µ+ ε)+(µ+ γ)(µ+θ)(µ+ ε),
a4 = µ(µ+ γ)(µ+θ)(µ+ ε)+aβ2E(µ+ γ)(µ+θ)(µ+ ε),
b1 = aβ1I∗+aβ2E∗−aβ2S∗,
b2 = aβ2E∗(µ+ θ)+ aβ2E∗(µ+ γ)+ aβ2E∗(µ+ ε)+ aβ1I∗(µ+ θ)+ aβ1I∗(µ+ γ)+ aβ1I∗(µ+ ε)−
aβ2µS∗−aβ2(µ+ γ)S∗−aβ2(µ+θ)S∗−a2β1S∗E∗,
b3 = aβ2E∗(µ + θ)(µ + ε) + aβ1I∗(µ + γ)(µ + θ) + aβ1I∗(µ + ε)(µ + θ) + aβ1I∗(µ + γ)(µ + ε) +
aβ2E∗(µ+γ)(µ+ε)+aβ2E∗(µ+γ)(µ+θ)−aβ2S∗µ(µ+γ)−aβ2S∗µ(µ+θ)−aβ2S∗(µ+θ)(µ+γ)−
a2β1S∗µε−a2β1S∗(µ+ γ)ε,
b4 = aβ1(µ+ ε)(µ+ θ)(µ+ γ)I∗− aβ2S∗µ(µ+ γ)(µ+ θ)− aβ1I∗γεθ− aβ2E∗γεθ− a2β1S∗εµ(µ+ γ),
where a = 1

1+α1I∗+α2I∗2 .

For τ = 0, equation (4.9) becomes

λ
4 + c1λ

3 + c2λ
2 + c3λ+ c4 = 0, where (4.10)

c1 = a1 +b1 = µ+(µ+ γ)+(µ+ ε)+(µ+θ)+aβ1I∗+aβ2E∗−aβ2S∗,
c2 = a2 + b2 = µ(µ+ γ)+ µ(µ+ ε)+ µ(µ+ θ)+ (µ+ ε)(µ+ γ)+ (µ+ θ)(µ+ γ)+ (µ+ ε)(µ+ θ)+
aβ2E∗(µ+θ)+aβ2E∗(µ+γ)+aβ2E∗(µ+ε)+aβ1I∗(µ+θ)+aβ1I∗(µ+γ)+aβ1I∗(µ+ε)−aβ2µS∗−
aβ2(µ+ γ)S∗−aβ2(µ+θ)S∗−a2β1S∗E∗,
c3 = a3+b3 = µ(µ+γ)(µ+ε)+µ(µ+γ)(µ+θ)+µ(µ+θ)(µ+ε)+(µ+γ)(µ+θ)(µ+ε)+aβ2E∗(µ+
θ)(µ+ ε)+aβ1I∗(µ+ γ)(µ+θ)+aβ1I∗(µ+ ε)(µ+θ)+aβ1I∗(µ+ γ)(µ+ ε)+aβ2E∗(µ+ γ)(µ+ ε)+
aβ2E∗(µ+γ)(µ+θ)−aβ2S∗µ(µ+γ)−aβ2S∗µ(µ+θ)−aβ2S∗(µ+θ)(µ+γ)−a2β1S∗µε−a2β1S∗(µ+
γ)ε,
and c4 = a4+b4 = µ(µ+γ)(µ+θ)(µ+ε)+aβ2E(µ+γ)(µ+θ)(µ+ε)+aβ1(µ+ε)(µ+θ)(µ+γ)I∗−
aβ2S∗µ(µ+ γ)(µ+θ)−aβ1I∗γεθ−aβ2E∗γεθ−a2β1S∗εµ(µ+ γ).
Therefore, with the help of Routh-Hurwitz criterion, all the roots of the equation (4.10) have negative
real parts if ci > 0, i = 1, 2, 3, 4, c1c2− c3 > 0 and c3(c1c2− c3)− c2

1c4 > 0. So we can conclude
that E∗ is locally asymptotically stable for τ = 0. Now putting λ = ϕ′i′, ϕ′ > 0 into the equation (4.9)
and separating the real and imaginary parts we get

ϕ
′4i′4 +a1ϕ

′3i′3 +a2ϕ
′2i′2 +a3ϕ

′i′+a4 +(cosϕ
′
τ− i′ sinϕ

′
τ)(b1ϕ

′3i′3 +b2ϕ
′2i′2 +b3ϕ

′i′+b4) = 0
(4.11)

−b2ϕ
′2 cosϕ

′
τ−b1ϕ

′3 sinϕ
′
τ+b4 cosϕ

′
τ+b3ϕ

′ sinϕ
′
τ =−ϕ

′4 +a2ϕ
′2−a4 (4.12)

b1ϕ
′3 cosϕ

′
τ−b2ϕ

′2 sinϕ
′
τ−b3ϕ

′ cosϕ
′
τ+b4 sinϕ

′
τ = a3ϕ

′−a1ϕ
′3 (4.13)

Squaring and adding equation no (4.12) and (4.13), we have
[−ϕ′4 +a2ϕ′2−a4]

2 +[a3ϕ′−a1ϕ′3]2 = [−b2ϕ′2 cosϕ′τ−b1ϕ′3 sinϕ′τ+b4 cosϕ′τ+b3ϕ′ sinϕ′τ]2 +
[b1ϕ′3 cosϕ′τ−b2ϕ′2 sinϕ′τ−b3ϕ′ cosϕ′τ+b4 sinϕ′τ]2

ϕ′8 +ϕ′6(a2
1−2a2−b2

1)+ϕ′4(a2
2 +2a4−2a1a3−b2

2 +2b1b3)+ϕ′2(a2
3−2a2a4−b2

3 +2b2b4)

+a2
4−b2

4 = 0 (4.14)

Let u1 = ϕ′2, then equation (4.14) can be rewritten as
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u4
1 +ρ0u3

1 +ρ1u2
1 +ρ2u1 +ρ3 = 0,where (4.15)

ρ0 = (a2
1− 2a2− b2

1), ρ1 = (a2
2 + 2a4− 2a1a3− b2

2 + 2b1b3), ρ2 = (a2
3− 2a2a4− b2

3 + 2b2b4) and
ρ3 = a2

4− b2
4. Therefore, by using the Routh-Hurwitz criterion, all the roots of the equation (4.15)

have negative real parts if ρi > 0, i = 1, 2, 3, 4, ρ0ρ1 − ρ2 > 0 and ρ2(ρ0ρ1 − ρ2)− ρ2
0ρ3 > 0.

Therefore we can notify that the endemic equilibrium point E∗ is locally asymptotically stable for
τ≥ 0.

4.3 Existence of Hopf bifurcation

From the above analysis for the local stability of E∗, it is noted that the equation (4.15) has a positive
root ϕ′0. This implies that the equation (4.15) has a pair of imaginary roots±iϕ′0. Let λ= u(τ)+ iϕ′(τ)
be the eigen values of equation (4.9) such that u(τ0) = 0, ϕ′(τ0) = 0. From equation (4.12) and (4.13)
we get the corresponding τk > 0 such that the characteristic equation (4.9) has a pair of imaginary
roots.

τk =
1

ϕ′0
cos−1

{
(b2−a1b1)ϕ

′6
0 −(a2b2−a3b1−a1b3+b4)ϕ

′4
0 +(a2b4+a4b2−a3b3)ϕ

′2
0 −a4b4

b2
1ϕ′60 +(b2

2−2b1b3)ϕ
′4
0 +(b2

3−2b2b4)ϕ
′2
0 +b2

4

}
+ 2kπ

ϕ′0
,

k = 0,1,2,3, ............., assuming ai, bi (i = 1, 2, 3, 4) to be bounded function of τ if the follow-
ing condition is satisfied d(Reλ)

dτ
> 0, at τ = τk

This will signify that there exists at least one eigenvalue with positive real part for τ > τk and for this
root of characteristic equation (4.9) crosses the imaginary axis from the left to the right as τ continu-
ously varies from a numberless than τk to one greater than τk. The real part of λ(τ) becomes positive
when τ > τ0 by continuity and the steady state becomes unstable. Since the loss of stability corre-
sponds to a root λ(τ) = iϕ′(τ) of the characteristic equation, there are solutions of the model heaving
like the real part of eϕ′(τ)i, that is there are periodic solutions, [25]. This is exactly what happens ac-
cording to the Hopf bifurcation theorem, which says that while roots of the characteristic polynomial
cross the imaginary axis a stable periodic orbit arise [26] and [27].

5 Sensitivity Analysis on R01

In our propose model we have considered only such types of disease which is only spread by contact.
For this concern we have some responsibilities to find out a desirable way to decrease the disease
transmission. We are trying to observe those parameters, which are responsible for increase the dis-
ease transmission. Our concentration to carry out the sensitivity of those parameters formerly which
have been given in Table:2 on R01. In epidemiology basically, disease transmission and control are
entirely depends on the basic reproduction number R01. First we investigate the sensitivity of R01 with
respect to the parameters of the without delay system by the method of [28], using the formula,

SR01
v j

=
∂R01

∂v j
×

v j

R01

Table1: Sensitivity indicates of R01 with respect to the parameters

Parameter v j ∧ β1 β2 µ θ ε

Value 1.3 0.001 0.2 0.001 0.03 0.12
SR01

v j
1 0.01899 0.98118 −0.01009 −0.18378 −0.97288
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From Table:1 it is clear that, the value of R01 will either increase or decrease it depends on the param-
eters ∧, β2 and β1. Therefore if the values of recruitment rate of susceptible population, contact rate
of susceptible population with infected and exposed class will increase (decrease) then the values of
R01 will also increase (decrease). On the other hand µ, θ and ε have inversely proportional relationship
with R01. If we increases the value of θ and ε then the value of R01 decreases. Numerically it has been
shown in Figure 6.

6 Numerical Simulation and Conclusion:

Table2: A set of parameter values
Parameter De f inition Value

Λ Recruitment rate of susceptible class 1.3
β1 Per capita contact rate between susceptible class and infected class 0.001
β2 Per capita contact rate between infected class and exposed class 0.2
µ Mortality rate of all adults class 0.001

α1 Positive constant 0.001
α2 Positive constant 0.01
τ Latent time delay 9.9
ε Rate by which the exposed classes are recruited to infected class 0.12
θ Rate at which the infected class are recruited to treatment class 0.03
γ Treatment rate 0.02

Now we investigate the behavior of the equilibria E0 and E∗ of the system (2.1) using numerical
simulation. For such investigation we choose set of parameter values satisfying the existence criteria
of E0 and E∗. The values of different parameters are given in the following table: With this set of
parameters values we show that the endemic equilibrium point E∗ of the without delay system is
stable and with delay system is unstable ( see Figure 1) If we decrease the value of delay time from
9.9 to 9.0 then we have Figure 2, which indicates that the endemic equilibrium point of both the
system is stable. Figure 3 shows that when we decrease the value of θ from 0.03 to 0.02 then the
endemic equilibrium point of the delay system goes from unstable situation to stable situation and
all other parameters values as in Table 2. Figure 4 indicates the bifurcation figure for the parameter
τ. Figure 5 displays that if we can decreases the contact rate of susceptible populations with infected
populations and exposed populations then the value of basic reproductive number will decreases.
Therefore the disease transmission rate will also decrease.

7 Conclusion:

We have introduced and analyzed an SEIT epidemic model to study the effect of discrete time delay. It
is observed that the disease free equilibrium point is locally asymptotically stable if (µ+θ+ε)> Λβ2

µ
and the basic reproductive number satisfies the relation 0 < R0 < 1. While this two relations R0 > 1
and τ > 0 are fulfilled then the endemic equilibrium point is locally asymptotically stable. In our final
analysis we have observed that, when we increase discrete delay time then the stable situation of the
endemic equilibrium point of the delayed model switches and Hopf bifurcation occurs. We have also
shown that if we decrease the value of treatment rate of the infected population from 0.03 to 0.02 then
the stability behavior of the endemic equilibrium of the delay system is also changed and its goes
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Fig. 1 The endemic equilibrium point E∗ of the without delay system is stable and with delay system is unstable.
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Fig. 2 The equilibrium point E∗ of both the system is stable when τ= 9.
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Fig. 3 Endemic equilibrium point of the delay system is stable when θ= 0.02 and unstable when θ= 0.03 with the other
parametric values as given in Table 2.
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from unstable to stable. Therefore from our study we must say that if we will increases the value of
treatment rate of infected population and the progression rate of infected population then the value
of R01 will decreases which ensure that the transmission rate of disease will decrease. Our computed
analytical outcome also being verified and tested by using numerical technique.
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